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A Let 7 be a topology on X. Then

Idealism

Cl(A) ={xe X:ANU # 0 for each U € 7(x)}

We can say AN U is not "very small"
Instead of of that we can say it does not belong to an ideal Z

{0} is an ideal
(r) = {x € X:ANU ¢ I for each U € 7(x)}

A1) (briefly A*) is called the local function
(X, 7,Z) is an ideal topological space [Kuratowski 1933].
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CI*(A) = AU A*

is a closure operator on P(X) and it generates a topology 7*(Z)
(briefly 7%) on X where

THI) = {UC X : CI*(X\ U) =X\ U}.

T C 7" C P(X)
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For (R, That), and ideal of sets with Lebesgue measure 0,

That-Borel sets are Lebesgue-measurable sets in 7,

[Scheinberg, 1971]

Generalization of Cantor-Bendixson theorem: For an ideal
topological space (X, 7,Z), where Z is compatible with 7 and
contains Fin, 7*-closed sets are union of a perfect set in 7 and
a set from the Z. [Freud, 1958]
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U is a B-open [Velicko 1966] iff for every x € U exists V € 7(x)
st. CI(V) C U

A is O-closed iff X \ A is -open iff

Idealism

A=Clg(A) ={xe X :Cl(U)N A #{ for each U € 7(x)}
f-open sets form a topology 79 on X
T9 C T

(X,T) is T3: open = f-open, T =1y
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Space is Ty iff every compact set is O-closed. [Jankovi¢, 1980]

Idealism

H-closed space is not a countable union of nowhere dense
f-closed sets. [Dickman and Porter, 1975]

Space is H-closed if every open cover has a finite subfamily such that their closures cover it

Every H-closed space with ccc is not a union of less than
continuum many 6-closed nowhere dense sets if and only if
Martin's axiom holds. [Dickman and Porter, 1975]
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Idealism

Ay ={xeX:ANU ¢ I foreach U € 7(x)}
Clp(A) = {x € X : AN CI(U) # 0 for each U € 7(x)}
Combining these two we get
Fr1)(A) ={x € X: ANCIU) ¢ Z for each U € 7(x)}.

[(r7)(A) (briefly [(A)) is local closure function [Al-Omari,
Noiri 2014]
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Yr(A)

1(;F(A)) C Cly(A);
B)=T(A)uUTl(B);
I)=T(A)=T(A\) for each | € Z.

= X\ T(X\ A) [A-Omari, Noiri 2014]

= Int(yr(A));
B) = 4r(A) Nyr(B);
) Yr(A) = ¢r(A\ 1) for each | € Z;

is #-open, then U C yr(U).
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Idealism

Fin - ideal of finite sets

Tetble - ideal of countable sets

T4 - ideal of closed discrete sets.

S is scattered if each nonempty subset of S contains an isolated point.
Zsc - ideal of scattered sets (if X is T;)

A is relatively compact if CI(A) is compact.

Tk - ideal of relatively compact sets

A is nowhere dense if Int(CI(A)) = 0

Zowd - ideal of nowhere dense sets

Countable union of nowhere dense sets is called a meager set

Tmg - ideal of meager sets
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If o C 09, then there exists a set A and a point x € A such that:
Ay (1) C(U) \ A& Z, for each U € 7(x), and

topologies

(2) there exist V € 7(x) and an open set W C V such that
CI(W)\ AeT.

Cl(V)
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On inequality of o and oy

SEME

X =wU{w}; 7= P(w)U{{w}Uw \ K : K € [w]<M}; T = Fin.

Lemma conditions are fulfilled

Each open neighborhood of the point w has the form U = {w} U (w \ K), and

Cl(U) \ {w} = w \ K & Fin. But there exists ng € U, so {np} is a clopen singleton, such that
Cl({no}) \ A= {no} € Fin.

{w} € o.
Yr({w}) = w.

The point w is the only point with infinite closure of each its neighborhood. Therefore, it is not
difficult to see that IN(w) = {w}.

{w} € Int(Cl(Yr({w}))),

i.e., {w} € oyp.

o C oy
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[Al-Omari, Noiri 2014] I'(A) # A*, but

Theorem

Let (X, 7,Z) be an ideal topological space. Then each of the
following conditions implies that ['(A) = A*, for each set A.
a) The topology 7 has a clopen base.

L =1y.
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SEE
X=R;K={:neZ\{0}}; Z=Fin

[ {(x—ax+a):a>0}, x#0;
B(X)_{{(—a,a)\K:a>0}, x=0

This neighbourhood system generates a To-topology which is
not T3 [Engelking, Example 1.5.6].
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For x # 0, there exists U € B(x) such that |[UN K| < 1, so UN K € Fin, implying x ¢ K*. If
x =0, since U = (—a,a) \ K for some a € R, we have U N K = () for each U € B(0), implying

0¢gK*.

If x # 0, then there also exists U € B(x) such that | CI(U) N K| < 1, so CI(U) N K € Fin, implying
x € T(K). For x =0 and U € B(x) we have U = (—a, a) \ K for some a € R. But CI(U) = [—a, a],
implying | C1(U) N K| = Rp, so CI(U) N K & Fin.
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SEMME

K*=10

For x # 0, there exists U € B(x) such that |[UN K| < 1, so UN K € Fin, implying x ¢ K*. If
x =0, since U = (—a,a) \ K for some a € R, we have U N K = () for each U € B(0), implying
0¢gK*.

r'(K) = {0}

If x # 0, then there also exists U € B(x) such that | CI(U) N K| < 1, so CI(U) N K € Fin, implying

x € T(K). For x =0 and U € B(x) we have U = (—a, a) \ K for some a € R. But CI(U) = [—a, a],
implying | C1(U) N K| = Rp, so CI(U) N K & Fin.

*
K* S T(K)
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T(A) # A*

Example
X=R,I= Ictble

[ {(x—a,x+a)NQ:aeRT}, xeQ
B(X)_{{(x—a,x+a):a€R+}, x e R\ Q.

is a neighbourhood system for T, topology which is not a T3

Irrational numbers can not be separated from any rational point by two disjoint open sets

(_1? 1)* = [_17 1] \Q

Each g € Q has a countable neighbourhood, which intersected with (—1, 1) is countable

r((-1,1)) = [-1,1]
Cl((q — a,g+a)NQ) =[q— a,q+ a] for each g € Q, and its intersection with [—1, 1] is either
empty, or a singleton, or a closed (uncountable) interval
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Let S={(%,sinn): n €N} CR? and L = {0} x [-1,1]. Let
X = SULU{p}, where p is a special point outside of R?.

g
/

For x € SU L let B(x) be the neighbourhood system as in the
induced topology on S U L from R?

For the point p let B(p) = {{p} US\ K : K € [S]<No}.

S is a scattered set.

Z=TZsand A=SUL.
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r(A) # A* SEME
A* = L.

For x € S, {x} N Ais a singleton, and therefore a scattered set.

For x € L, each its neighbourhood contains an interval on the line L, so not scattered.
Each neighbourhood of p meets only S, so its intersection with A is scattered.

[(A) = LU {p}.

L C CL(S).

L C CI(S \ K), where K is finite.

For an open set U = {p} U S\ K, as a neighbourhood of p, we have Cl(U) = UU L. So, CI(U)N A
contains L, which is dense in itself, and therefore C1(U) N A is not scattered, implying p € [(A).
By the same reason as in the local function case, there is no point of S in ['(A).

So, (SUL)* CT(SUL).
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discrete (see [Jankovi¢ Hamlett 1990])
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the first example of T>-space

A topological space (X, 7) is nearly discrete if each x € X has a
finite neighbourhood.

Every nearly discrete space is an Alexandroff space (arbitrary
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intersection of open sets is open).

It is known that X%, = 0 if and only if (X, ) is nearly
discrete (see [Jankovi¢ Hamlett 1990])

For an ideal topological space (X, 7, Fin), if [(X) = 0, then
(X, T) is nearly discrete.
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The converse is not true.

Let X =w, B={{0,i} : i € w}.
{0} is an open set and CL({0}) = w.
MNw) =w # 0.

Since C1({0,/}) Nw =wNw =w & Fin
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Liza) e A% = {x € X :|ANU| > Ny for all U € 7(x)} is the set of all

w-accumulation points of the set A
For the ideal Fin we have A* = A%,
For T; spaces we have that the derived set (set of accumulation
points)
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A={xeX:AnU\{x}#0 forall Ue r(x)}

is equal to A%
O-derived set [Caldas, Jafari, Kovar 2004] is defined by

Dy(A)={x e X:AnU\ {x} # 0 forall Ue 7p(x)}

For the ideal topological space of the form (X, 7, Fin) and each
subset A of X in it we have ['(A) C Dy(A).
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Inclusion can be strict.

SEME

Let us consider the left-ray topology on the real line, i.e.,
T ={(—00,a): a€ R}

The only #-open sets are () and R.

K: finite set with at least two elements

Dy(K) = R.

[(K) = 0.
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